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OVERVIEW

▪ Many programs are "data processing" applications

▪ Read the input data

▪ Perform sequence of operations on this data

▪ Write the output data

▪ How we read and write this data is a key part of program

▪ We use System.in and Scanner to read keyboard input

▪ We use System.out,println to print output to screen

▪ Having users type in their data is very limiting

▪ We need files to process larger quantities of data
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OVERVIEW

▪ Files are very useful for data processing applications

▪ Files provide long term storage of valuable information

▪ Files can contain large quantities of data

▪ Files can be viewed and modified by text editors

▪ Files can be read and written by programs

▪ In this section, we will show how

▪ FileInputStream and Scanner are used to read files

▪ FileOutputStream and PrintWriter are used to write files
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OVERVIEW

▪ Lesson objectives:

▪ Learn more about input and output streams

▪ Learn how open and close text files

▪ Learn how to read and write text files

▪ Learn about input / output error checking

▪ Study programs for numerical data input/output

▪ Study programs for mixed data input/output
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STREAMS AND 

FILES
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INPUT FILES



INPUT FILES

▪ Input files have many advantages

▪ We can store large amounts of data in a file

▪ We can store different kinds of data in a file

▪ We can edit this data using a text editor

▪ We can read and process this data in a program

▪ Java has provided support for file input

▪ Add the following at top of program

 import java.io.FileInputStream;

 import java.io.IOException;
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READING INTEGERS

▪ Consider the problem of reading and processing an input 

file that contains integers separated by spaces

▪ Get the name of the file to open

▪ Create a FileInputStream object

▪ Create a Scanner object

▪ While data is available in file to read

▪ Read integer value from the input file

▪ Process this data in some way

▪ Close the input file

▪ Java will “throw exceptions” (print error message and die) 

if the file does not exist, or if you try to read past end of file
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READING INTEGERS

▪ Program to read and print integer values in a file

   // Create file stream and scanner

   FileInputStream fileStream = new FileInputStream(fileName);

   Scanner fileScanner = new Scanner(fileStream);

   

   // Loop reading and printing data

   while (fileScanner.hasNextInt()) 

   {

      int value = fileScanner.nextInt();

      System.out.print(value + " ");

   } 

   // Close input file

   fileStream.close();
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This creates a Scanner 

object we can use to read 

any data type from the file

We used 

System.in 

before 



READING INTEGERS

▪ Program to read and print integer values in a file

   // Create file stream and scanner

   FileInputStream fileStream = new FileInputStream(fileName);

   Scanner fileScanner = new Scanner(fileStream);

   

   // Loop reading and printing data

   while (fileScanner.hasNextInt()) 

   {

      int value = fileScanner.nextInt();

      System.out.print(value + " ");

   } 

   // Close input file

   fileStream.close();
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This checks the scanner 

to see if another integer 

is available in file to read



READING INTEGERS

▪ Program to read and print integer values in a file

   // Create file stream and scanner

   FileInputStream fileStream = new FileInputStream(fileName);

   Scanner fileScanner = new Scanner(fileStream);

   

   // Loop reading and printing data

   while (fileScanner.hasNextInt()) 

   {

      int value = fileScanner.nextInt();

      System.out.print(value + " ");

   } 

   // Close input file

   fileStream.close();
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This reads and prints 

the next integer from 

the input file



READING INTEGERS

▪ Program to read and print integer values in a file

   // Create file stream and scanner

   FileInputStream fileStream = new FileInputStream(fileName);

   Scanner fileScanner = new Scanner(fileStream);

   

   // Loop reading and printing data

   while (fileScanner.hasNextInt()) 

   {

      int value = fileScanner.nextInt();

      System.out.print(value + " ");

   } 

   // Close input file

   fileStream.close();
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Once the input/output 

is working we can add 

more data processing 

here (e.g. calculate 

the average value)



READING INTEGERS

▪ Program to read and print integer values in a file

   // Create file stream and scanner

   FileInputStream fileStream = new FileInputStream(fileName);

   Scanner fileScanner = new Scanner(fileStream);

   

   // Loop reading and printing data

   while (fileScanner.hasNextInt()) 

   {

      int value = fileScanner.nextInt();

      System.out.print(value + " ");

   } 

   // Close input file

   fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 12

This closes the input 

file so it can be used 

by other users



READING INTEGERS

▪ Sample input.txt file (all values on one line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

▪ Sample input.txt file (five values per line)

1   2   3   4   5 

6   7   8   9  10 

11 12 13 14 15

16 17 18 19 20

▪ It does not matter how this input file is formatted because 

fileScanner.nextInt() will skip over all white space before 

reading the integer
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CODE DEMO

FindAverage.java
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READING STRINGS

▪ Consider the problem of reading an essay and counting 

the number of times a target word occurs (e.g. “because”)

▪ Get the name of the file to open

▪ Create a FileInputStream object

▪ Create a Scanner object

▪ Get target word from user

▪ While data is available to read

▪ Read string from the input file

▪ Compare string to target word

▪ If word matches increment counter

▪ Close the input file
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READING STRINGS

▪ Program to read and compare strings in a file

// Read file name

System.out.print("Enter file name: ");

String fileName = scnr.next();

// Read target word

System.out.print("Enter target word: ");

String target = scnr.next();

// Create file stream and scanner

FileInputStream fileStream = new FileInputStream(fileName);

Scanner fileScnr = new Scanner(fileStream);
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First we get user input



READING STRINGS

▪ Program to read and compare strings in a file

// Read file name

System.out.print("Enter file name: ");

String fileName = scnr.next();

// Read target word

System.out.print("Enter target word: ");

String target = scnr.next();

// Create file stream and scanner

FileInputStream fileStream = new FileInputStream(fileName);

Scanner fileScnr = new Scanner(fileStream);
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Then we create Scanner 

object to read strings from 

the input file one by one



READING STRINGS

▪ Program to read and compare strings in a file

// Read and print words

String word;

int count = 0;

int found = 0;

while (fileScnr.hasNext()) 

{

    word = fileScnr.next();

    if (word.equals(target))

        found++;

count++;

}
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Loop reading words until we 

reach the end of the input file



READING STRINGS

▪ Program to read and compare strings in a file

// Read and print words

String word;

int count = 0;

int found = 0;

while (fileScnr.hasNext()) 

{

    word = fileScnr.next();

    if (word.equals(target))

        found++;

count++;

}
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If the word matches the target 

word we increment the counter



READING STRINGS

▪ Program to read and compare strings in a file

// Print results

System.out.println("Word '" + target + "' was found " + found +

           " times out of " + count + " words in document");

// Close input file

fileStream.close();
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Close the input file

Print the results



READING STRINGS

▪ Sample book.txt input file (from David Copperfield)

Whether I shall turn out to be the hero of my own life, or whether that 

station will be held by anybody else, these pages must show. To begin 

my life with the beginning of my life, I record that I was born (as I have 

been informed and believe) on a Friday, at twelve o’clock at night. It 

was remarked that the clock began to strike, and I began to cry, 

simultaneously.
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READING STRINGS

▪ Sample program output

Enter file name: book.txt

Enter target word: the

Word 'the' found 3 times out of 73 words

Enter file name: book.txt

Enter target word: I

Word ’I' found 5 times out of 73 words

Enter file name: book.txt

Enter target word: zebra

Word ’zebra' found 0 times out of 73 words
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CODE DEMO

CountWords.java
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READING MIXED DATA

▪ Consider the problem of reading and processing student 
grade information from an input file

▪ We need to know what is stored, and in what order

▪ For example, it is possible to store student ID, Name, and 
GPA in six different ways!

▪ ID  Name  GPA

▪ ID  GPA  Name

▪ Name  ID  GPA

▪ Name  GPA  ID 

▪ GPA  ID  Name

▪ GPA  Name  ID
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READING MIXED DATA

▪ Assume that the input file stores one student record per 

line in the file, and student data fields are in this order:  

▪ ID  Name  GPA

▪ The goal of our program is to read the input file and print 

information for all students with GPA >= 3.5

▪ Open input file

▪ Loop until end of file reached

▪ Read three pieces of student data

▪ Print student information if GPA is above 3.5

▪ Close the input file
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READING MIXED DATA

▪ Program to read and process student data

// Create file stream and scanner

FileInputStream fileStream = new FileInputStream("student.txt");

Scanner fileScanner = new Scanner(fileStream);

// Read and print student information

while (fileScanner.hasNextInt()) 

{

   int studentID = fileScanner.nextInt();

   String studentName = fileScanner.next();

   float studentGPA = fileScanner.nextFloat();
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This opens an input 

file called student.txt



READING MIXED DATA

▪ Program to read and process student data

// Create file stream and scanner

FileInputStream fileStream = new FileInputStream("student.txt");

Scanner fileScanner = new Scanner(fileStream);

// Read and print student information

while (fileScanner.hasNextInt()) 

{

   int studentID = fileScanner.nextInt();

   String studentName = fileScanner.next();

   float studentGPA = fileScanner.nextFloat();
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This reads an integer, 

string, and float in this 

order from input file



READING MIXED DATA

▪ Program to read and process student data

// Print selected student information

if (studentGPA >= 3.5)

   System.out.println(studentID + " " + 

      studentName + " " + studentGPA);

}

// Close input file

fileStream.close();
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Print information for 

selected students



READING MIXED DATA

▪ Program to read and process student data

// Print selected student information

if (studentGPA >= 3.5)

   System.out.println(studentID + " " + 

      studentName + " " + studentGPA);

}

// Close input file

fileStream.close();
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Close the input file



READING MIXED DATA

▪ Sample program output

123     Smith 3.5

321     Johnson 3.7

765     Miller 3.9

963     Moore 3.8
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▪ Sample student.txt file

123     Smith 3.5

321     Johnson 3.7

431     Williams 2.9

234     Jones 2.7

345     Brown 3.1

567     Davis 2.5

765     Miller 3.9

864     Wilson 1.7

963     Moore 3.8

369     Taylor 2.3



CODE DEMO

ReadStudent.java
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SUMMARY

▪ In this section described the Java syntax for file input

▪ How to open an input file

▪ How to read integers, strings, and mixed data from file

▪ How to close an input file

▪ Key concept:  The program that reads the file must know 

the format of the input file in advance

▪ We need to know what data types are required

▪ We need to know the order values are stored in

▪ Otherwise the program will have errors and might crash
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STREAMS AND 

FILES

PART 2

OUTPUT FILES



OUTPUT FILES

▪ Writing program output into a file has several advantages

▪ We can output very large amounts of data

▪ We can save this information long term in file system

▪ We can read / edit this data using a text editor

▪ We can process this data using another program

▪ Java has provided support for file output

▪ Add the following at top of program

 import java.io.FileOutputStream; 

 import java.io.PrintWriter;

 import java.io.IOException;
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WRITING INTEGERS

▪ Consider the problem of creating an output file that 

contains the times table up to 10x10

▪ Get the name of the file to create

▪ Create a FileOutputStream object

▪ Create a PrintWriter object

▪ Loop printing integer values to output file

▪ Close the output file

▪ Java will “throw exceptions” (print error message and die) 

if the output file can not be created
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WRITING INTEGERS

▪ Program to output the times table up to 10x10

// Read file name

Scanner scnr = new Scanner(System.in);

System.out.print("Enter output file name: ");

String fileName = scnr.next();

// Create file stream and writer

FileOutputStream fileStream = new FileOutputStream(fileName);

PrintWriter fileWriter = new PrintWriter(fileStream);
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Open the output file

36

Get file name from user



WRITING INTEGERS

▪ Program to output the times table up to 10x10

// Write integers to file

for (int row=1; row<=10; row++)

{

   for (int col=1; col<=10; col++)

      fileWriter.printf("%4d", row*col);

   fileWriter.println();

}

// Close input file

fileWriter.flush();

fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 

Loop printing values 

for 12x12 times table

37

Flush and close 

the output file

Printing a new line 

after every row



WRITING INTEGERS

▪ Sample program output

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10  20  30  40  50  60  70  80  90 100
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Notice that the columns 

are aligned because we 

used formatted output 

with printf(“%4d”, )



CODE DEMO

PrintTable.java
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WRITING MIXED DATA

▪ When we write variables with different data types to a file 

we need to make the format easy to read

▪ Group data that belongs together on one line

▪ Put data fields in an easy to read/use order

▪ Print spaces between data fields to separate them

▪ Print commas between data fields to get CSV format

▪ Example:  Writing student information to a file

▪ Assume student data is stored in four arrays

▪ Print one student record per line in the output file

▪ Desired output order:  ID  GPA  FirstName LastName
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WRITING MIXED DATA

▪ Program to output student information

// Initialize student info

int studentID[] = {123, 234, 345, 456};

double studentGPA[] = {3.1, 3.7, 2.9, 4.0};

String firstName[] = {"Jim", "Sally", "Bob", "Tom"};

String lastName[] = {"Brown", "Smith", "Miller", "Jones"};        

// Create file stream and writer

String fileName = "student.txt";

FileOutputStream fileStream = new FileOutputStream(fileName);

PrintWriter fileWriter = new PrintWriter(fileStream);
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Create “student.txt” file

41



WRITING MIXED DATA

▪ Program to output student information

// Write student info to file

for (int i=0; i<studentID.length; i++)

    fileWriter.printf("%d %3.1f %s %s\n", 

        studentID[i], studentGPA[i], firstName[i], lastName[i]);

// Close input file

fileWriter.flush();

fileStream.close();
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Print four pieces of data 

using formatted output

%d for integer

%f for float

%s for string
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WRITING MIXED DATA

▪ Program to output student information

// Write student info to file

for (int i=0; i<studentID.length; i++)

    fileWriter.printf(”%d,%3.1f,%s,%s\n", 

        studentID[i], studentGPA[i], firstName[i], lastName[i]);

// Close input file

fileWriter.flush();

fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 

This version prints 

student information in 

comma separated value 

(CSV) format instead

43



WRITING MIXED DATA

▪ Sample student.txt file

123 3.1 Jim Brown

234 3.7 Sally Smith

345 2.9 Bob Miller

456 4.0 Tom Jones

▪ Notice that this output format is different than our 

previous student input file format 

▪ We can NOT read this student.txt file using our previous 

student input program

▪ We should change either the input format OR the output 

format so they match each other
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WRITING MIXED DATA

▪ Sample student.txt file

123,3.1,Jim,Brown

234 3.7 Sally Smith

345 2.9 Bob Miller

456 4.0 Tom Jones

▪ Notice that this output format is different than our 

previous student input file format 

▪ We can NOT read this student.txt file using our previous 

student input program

▪ We should change either the input format OR the output 

format so they match each other
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CODE DEMO

PrintStudent.java

StudentInfo.java
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SUMMARY

▪ In this section described the Java syntax for file output

▪ How to open an output file

▪ How to write data to the file

▪ How to close the file

▪ Remember to put spaces or commas between output values

▪ Otherwise your data may be unreadable

▪ Be very careful when opening output files

▪ If you open a file that already exists, you will erase the original file 
and overwrite it with your output

▪ This can be very bad, especially if you use the name of the input 
file (or your source code!) by accident
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