
STREAMS AND

FILES

OVERVIEW

OVERVIEW

▪ Many programs are "data processing" applications

▪ Read the input data

▪ Perform sequence of operations on this data

▪ Write the output data

▪ How we read and write this data is a key part of program

▪ We use System.in and Scanner to read keyboard input

▪ We use System.out,println to print output to screen

▪ Having users type in their data is very limiting

▪ We need files to process larger quantities of data

(c) Prof. John Gauch, Univ. of Arkansas, 2020 2

OVERVIEW

▪ Files are very useful for data processing applications

▪ Files provide long term storage of valuable information

▪ Files can contain large quantities of data

▪ Files can be viewed and modified by text editors

▪ Files can be read and written by programs

▪ In this section, we will show how

▪ FileInputStream and Scanner are used to read files

▪ FileOutputStream and PrintWriter are used to write files

(c) Prof. John Gauch, Univ. of Arkansas, 2020 3

OVERVIEW

▪ Lesson objectives:

▪ Learn more about input and output streams

▪ Learn how open and close text files

▪ Learn how to read and write text files

▪ Learn about input / output error checking

▪ Study programs for numerical data input/output

▪ Study programs for mixed data input/output

(c) Prof. John Gauch, Univ. of Arkansas, 2020 4

STREAMS AND

FILES

PART 1

INPUT FILES

INPUT FILES

▪ Input files have many advantages

▪ We can store large amounts of data in a file

▪ We can store different kinds of data in a file

▪ We can edit this data using a text editor

▪ We can read and process this data in a program

▪ Java has provided support for file input

▪ Add the following at top of program

 import java.io.FileInputStream;

 import java.io.IOException;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 6

READING INTEGERS

▪ Consider the problem of reading and processing an input

file that contains integers separated by spaces

▪ Get the name of the file to open

▪ Create a FileInputStream object

▪ Create a Scanner object

▪ While data is available in file to read

▪ Read integer value from the input file

▪ Process this data in some way

▪ Close the input file

▪ Java will “throw exceptions” (print error message and die)

if the file does not exist, or if you try to read past end of file

(c) Prof. John Gauch, Univ. of Arkansas, 2020 7

READING INTEGERS

▪ Program to read and print integer values in a file

 // Create file stream and scanner

 FileInputStream fileStream = new FileInputStream(fileName);

 Scanner fileScanner = new Scanner(fileStream);

 // Loop reading and printing data

 while (fileScanner.hasNextInt())

 {

 int value = fileScanner.nextInt();

 System.out.print(value + " ");

 }

 // Close input file

 fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 8

This creates a Scanner

object we can use to read

any data type from the file

We used

System.in

before

READING INTEGERS

▪ Program to read and print integer values in a file

 // Create file stream and scanner

 FileInputStream fileStream = new FileInputStream(fileName);

 Scanner fileScanner = new Scanner(fileStream);

 // Loop reading and printing data

 while (fileScanner.hasNextInt())

 {

 int value = fileScanner.nextInt();

 System.out.print(value + " ");

 }

 // Close input file

 fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 9

This checks the scanner

to see if another integer

is available in file to read

READING INTEGERS

▪ Program to read and print integer values in a file

 // Create file stream and scanner

 FileInputStream fileStream = new FileInputStream(fileName);

 Scanner fileScanner = new Scanner(fileStream);

 // Loop reading and printing data

 while (fileScanner.hasNextInt())

 {

 int value = fileScanner.nextInt();

 System.out.print(value + " ");

 }

 // Close input file

 fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 10

This reads and prints

the next integer from

the input file

READING INTEGERS

▪ Program to read and print integer values in a file

 // Create file stream and scanner

 FileInputStream fileStream = new FileInputStream(fileName);

 Scanner fileScanner = new Scanner(fileStream);

 // Loop reading and printing data

 while (fileScanner.hasNextInt())

 {

 int value = fileScanner.nextInt();

 System.out.print(value + " ");

 }

 // Close input file

 fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 11

Once the input/output

is working we can add

more data processing

here (e.g. calculate

the average value)

READING INTEGERS

▪ Program to read and print integer values in a file

 // Create file stream and scanner

 FileInputStream fileStream = new FileInputStream(fileName);

 Scanner fileScanner = new Scanner(fileStream);

 // Loop reading and printing data

 while (fileScanner.hasNextInt())

 {

 int value = fileScanner.nextInt();

 System.out.print(value + " ");

 }

 // Close input file

 fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 12

This closes the input

file so it can be used

by other users

READING INTEGERS

▪ Sample input.txt file (all values on one line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

▪ Sample input.txt file (five values per line)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

▪ It does not matter how this input file is formatted because

fileScanner.nextInt() will skip over all white space before

reading the integer

(c) Prof. John Gauch, Univ. of Arkansas, 2020 13

CODE DEMO

FindAverage.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 14

READING STRINGS

▪ Consider the problem of reading an essay and counting

the number of times a target word occurs (e.g. “because”)

▪ Get the name of the file to open

▪ Create a FileInputStream object

▪ Create a Scanner object

▪ Get target word from user

▪ While data is available to read

▪ Read string from the input file

▪ Compare string to target word

▪ If word matches increment counter

▪ Close the input file

(c) Prof. John Gauch, Univ. of Arkansas, 2020 15

READING STRINGS

▪ Program to read and compare strings in a file

// Read file name

System.out.print("Enter file name: ");

String fileName = scnr.next();

// Read target word

System.out.print("Enter target word: ");

String target = scnr.next();

// Create file stream and scanner

FileInputStream fileStream = new FileInputStream(fileName);

Scanner fileScnr = new Scanner(fileStream);

(c) Prof. John Gauch, Univ. of Arkansas, 2020 16

First we get user input

READING STRINGS

▪ Program to read and compare strings in a file

// Read file name

System.out.print("Enter file name: ");

String fileName = scnr.next();

// Read target word

System.out.print("Enter target word: ");

String target = scnr.next();

// Create file stream and scanner

FileInputStream fileStream = new FileInputStream(fileName);

Scanner fileScnr = new Scanner(fileStream);

(c) Prof. John Gauch, Univ. of Arkansas, 2020 17

Then we create Scanner

object to read strings from

the input file one by one

READING STRINGS

▪ Program to read and compare strings in a file

// Read and print words

String word;

int count = 0;

int found = 0;

while (fileScnr.hasNext())

{

 word = fileScnr.next();

 if (word.equals(target))

 found++;

count++;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 18

Loop reading words until we

reach the end of the input file

READING STRINGS

▪ Program to read and compare strings in a file

// Read and print words

String word;

int count = 0;

int found = 0;

while (fileScnr.hasNext())

{

 word = fileScnr.next();

 if (word.equals(target))

 found++;

count++;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 19

If the word matches the target

word we increment the counter

READING STRINGS

▪ Program to read and compare strings in a file

// Print results

System.out.println("Word '" + target + "' was found " + found +

 " times out of " + count + " words in document");

// Close input file

fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 20

Close the input file

Print the results

READING STRINGS

▪ Sample book.txt input file (from David Copperfield)

Whether I shall turn out to be the hero of my own life, or whether that

station will be held by anybody else, these pages must show. To begin

my life with the beginning of my life, I record that I was born (as I have

been informed and believe) on a Friday, at twelve o’clock at night. It

was remarked that the clock began to strike, and I began to cry,

simultaneously.

(c) Prof. John Gauch, Univ. of Arkansas, 2020 21

READING STRINGS

▪ Sample program output

Enter file name: book.txt

Enter target word: the

Word 'the' found 3 times out of 73 words

Enter file name: book.txt

Enter target word: I

Word ’I' found 5 times out of 73 words

Enter file name: book.txt

Enter target word: zebra

Word ’zebra' found 0 times out of 73 words

(c) Prof. John Gauch, Univ. of Arkansas, 2020 22

CODE DEMO

CountWords.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 23

READING MIXED DATA

▪ Consider the problem of reading and processing student
grade information from an input file

▪ We need to know what is stored, and in what order

▪ For example, it is possible to store student ID, Name, and
GPA in six different ways!

▪ ID Name GPA

▪ ID GPA Name

▪ Name ID GPA

▪ Name GPA ID

▪ GPA ID Name

▪ GPA Name ID

(c) Prof. John Gauch, Univ. of Arkansas, 2020 24

READING MIXED DATA

▪ Assume that the input file stores one student record per

line in the file, and student data fields are in this order:

▪ ID Name GPA

▪ The goal of our program is to read the input file and print

information for all students with GPA >= 3.5

▪ Open input file

▪ Loop until end of file reached

▪ Read three pieces of student data

▪ Print student information if GPA is above 3.5

▪ Close the input file

(c) Prof. John Gauch, Univ. of Arkansas, 2020 25

READING MIXED DATA

▪ Program to read and process student data

// Create file stream and scanner

FileInputStream fileStream = new FileInputStream("student.txt");

Scanner fileScanner = new Scanner(fileStream);

// Read and print student information

while (fileScanner.hasNextInt())

{

 int studentID = fileScanner.nextInt();

 String studentName = fileScanner.next();

 float studentGPA = fileScanner.nextFloat();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 26

This opens an input

file called student.txt

READING MIXED DATA

▪ Program to read and process student data

// Create file stream and scanner

FileInputStream fileStream = new FileInputStream("student.txt");

Scanner fileScanner = new Scanner(fileStream);

// Read and print student information

while (fileScanner.hasNextInt())

{

 int studentID = fileScanner.nextInt();

 String studentName = fileScanner.next();

 float studentGPA = fileScanner.nextFloat();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 27

This reads an integer,

string, and float in this

order from input file

READING MIXED DATA

▪ Program to read and process student data

// Print selected student information

if (studentGPA >= 3.5)

 System.out.println(studentID + " " +

 studentName + " " + studentGPA);

}

// Close input file

fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 28

Print information for

selected students

READING MIXED DATA

▪ Program to read and process student data

// Print selected student information

if (studentGPA >= 3.5)

 System.out.println(studentID + " " +

 studentName + " " + studentGPA);

}

// Close input file

fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 29

Close the input file

READING MIXED DATA

▪ Sample program output

123 Smith 3.5

321 Johnson 3.7

765 Miller 3.9

963 Moore 3.8

(c) Prof. John Gauch, Univ. of Arkansas, 2020 30

▪ Sample student.txt file

123 Smith 3.5

321 Johnson 3.7

431 Williams 2.9

234 Jones 2.7

345 Brown 3.1

567 Davis 2.5

765 Miller 3.9

864 Wilson 1.7

963 Moore 3.8

369 Taylor 2.3

CODE DEMO

ReadStudent.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 31

SUMMARY

▪ In this section described the Java syntax for file input

▪ How to open an input file

▪ How to read integers, strings, and mixed data from file

▪ How to close an input file

▪ Key concept: The program that reads the file must know

the format of the input file in advance

▪ We need to know what data types are required

▪ We need to know the order values are stored in

▪ Otherwise the program will have errors and might crash

(c) Prof. John Gauch, Univ. of Arkansas, 2020 32

STREAMS AND

FILES

PART 2

OUTPUT FILES

OUTPUT FILES

▪ Writing program output into a file has several advantages

▪ We can output very large amounts of data

▪ We can save this information long term in file system

▪ We can read / edit this data using a text editor

▪ We can process this data using another program

▪ Java has provided support for file output

▪ Add the following at top of program

 import java.io.FileOutputStream;

 import java.io.PrintWriter;

 import java.io.IOException;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 34

WRITING INTEGERS

▪ Consider the problem of creating an output file that

contains the times table up to 10x10

▪ Get the name of the file to create

▪ Create a FileOutputStream object

▪ Create a PrintWriter object

▪ Loop printing integer values to output file

▪ Close the output file

▪ Java will “throw exceptions” (print error message and die)

if the output file can not be created

(c) Prof. John Gauch, Univ. of Arkansas, 2020 35

WRITING INTEGERS

▪ Program to output the times table up to 10x10

// Read file name

Scanner scnr = new Scanner(System.in);

System.out.print("Enter output file name: ");

String fileName = scnr.next();

// Create file stream and writer

FileOutputStream fileStream = new FileOutputStream(fileName);

PrintWriter fileWriter = new PrintWriter(fileStream);

(c) Prof. John Gauch, Univ. of Arkansas, 2020

Open the output file

36

Get file name from user

WRITING INTEGERS

▪ Program to output the times table up to 10x10

// Write integers to file

for (int row=1; row<=10; row++)

{

 for (int col=1; col<=10; col++)

 fileWriter.printf("%4d", row*col);

 fileWriter.println();

}

// Close input file

fileWriter.flush();

fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020

Loop printing values

for 12x12 times table

37

Flush and close

the output file

Printing a new line

after every row

WRITING INTEGERS

▪ Sample program output

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

(c) Prof. John Gauch, Univ. of Arkansas, 2020 38

Notice that the columns

are aligned because we

used formatted output

with printf(“%4d”,)

CODE DEMO

PrintTable.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 39

WRITING MIXED DATA

▪ When we write variables with different data types to a file

we need to make the format easy to read

▪ Group data that belongs together on one line

▪ Put data fields in an easy to read/use order

▪ Print spaces between data fields to separate them

▪ Print commas between data fields to get CSV format

▪ Example: Writing student information to a file

▪ Assume student data is stored in four arrays

▪ Print one student record per line in the output file

▪ Desired output order: ID GPA FirstName LastName

(c) Prof. John Gauch, Univ. of Arkansas, 2020 40

WRITING MIXED DATA

▪ Program to output student information

// Initialize student info

int studentID[] = {123, 234, 345, 456};

double studentGPA[] = {3.1, 3.7, 2.9, 4.0};

String firstName[] = {"Jim", "Sally", "Bob", "Tom"};

String lastName[] = {"Brown", "Smith", "Miller", "Jones"};

// Create file stream and writer

String fileName = "student.txt";

FileOutputStream fileStream = new FileOutputStream(fileName);

PrintWriter fileWriter = new PrintWriter(fileStream);

(c) Prof. John Gauch, Univ. of Arkansas, 2020

Create “student.txt” file

41

WRITING MIXED DATA

▪ Program to output student information

// Write student info to file

for (int i=0; i<studentID.length; i++)

 fileWriter.printf("%d %3.1f %s %s\n",

 studentID[i], studentGPA[i], firstName[i], lastName[i]);

// Close input file

fileWriter.flush();

fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020

Print four pieces of data

using formatted output

%d for integer

%f for float

%s for string

42

WRITING MIXED DATA

▪ Program to output student information

// Write student info to file

for (int i=0; i<studentID.length; i++)

 fileWriter.printf(”%d,%3.1f,%s,%s\n",

 studentID[i], studentGPA[i], firstName[i], lastName[i]);

// Close input file

fileWriter.flush();

fileStream.close();

(c) Prof. John Gauch, Univ. of Arkansas, 2020

This version prints

student information in

comma separated value

(CSV) format instead

43

WRITING MIXED DATA

▪ Sample student.txt file

123 3.1 Jim Brown

234 3.7 Sally Smith

345 2.9 Bob Miller

456 4.0 Tom Jones

▪ Notice that this output format is different than our

previous student input file format

▪ We can NOT read this student.txt file using our previous

student input program

▪ We should change either the input format OR the output

format so they match each other

(c) Prof. John Gauch, Univ. of Arkansas, 2020 44

WRITING MIXED DATA

▪ Sample student.txt file

123,3.1,Jim,Brown

234 3.7 Sally Smith

345 2.9 Bob Miller

456 4.0 Tom Jones

▪ Notice that this output format is different than our

previous student input file format

▪ We can NOT read this student.txt file using our previous

student input program

▪ We should change either the input format OR the output

format so they match each other

(c) Prof. John Gauch, Univ. of Arkansas, 2020 45

CODE DEMO

PrintStudent.java

StudentInfo.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 46

SUMMARY

▪ In this section described the Java syntax for file output

▪ How to open an output file

▪ How to write data to the file

▪ How to close the file

▪ Remember to put spaces or commas between output values

▪ Otherwise your data may be unreadable

▪ Be very careful when opening output files

▪ If you open a file that already exists, you will erase the original file
and overwrite it with your output

▪ This can be very bad, especially if you use the name of the input
file (or your source code!) by accident

(c) Prof. John Gauch, Univ. of Arkansas, 2020 47

	Slide 1: Streams and Files
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: OVERVIEW
	Slide 5: Streams and files
	Slide 6: Input files
	Slide 7: Reading integers
	Slide 8: Reading integers
	Slide 9: Reading integers
	Slide 10: Reading integers
	Slide 11: Reading integers
	Slide 12: Reading integers
	Slide 13: Reading integers
	Slide 14: CODE DEMO
	Slide 15: Reading strings
	Slide 16: Reading strings
	Slide 17: Reading strings
	Slide 18: Reading strings
	Slide 19: Reading strings
	Slide 20: Reading strings
	Slide 21: Reading strings
	Slide 22: Reading strings
	Slide 23: CODE DEMO
	Slide 24: Reading mixed data
	Slide 25: Reading mixed data
	Slide 26: Reading mixed data
	Slide 27: Reading mixed data
	Slide 28: Reading mixed data
	Slide 29: Reading mixed data
	Slide 30: Reading mixed data
	Slide 31: CODE DEMO
	Slide 32: summary
	Slide 33: Streams and files
	Slide 34: Output files
	Slide 35: Writing integers
	Slide 36: Writing integers
	Slide 37: Writing integers
	Slide 38: Writing integers
	Slide 39: CODE DEMO
	Slide 40: Writing mixed data
	Slide 41: Writing mixed data
	Slide 42: Writing mixed data
	Slide 43: Writing mixed data
	Slide 44: Writing mixed data
	Slide 45: Writing mixed data
	Slide 46: CODE DEMO
	Slide 47: summary

